USER MANUAL

TEC-220 \& TEC-920

Auto-Tune PID Process
Temperature Controller

Ti

C ϵ

Warning Symbol

This symbol calls attention to an operating procedure, practice, or the like which, if not correctly performed or adhered to, could result in personal injury or damage to or destruction of part or all of the product and system. Do not proceed beyond a warning symbol until the indicated conditions are fully understood and met.

Using the Manual

- Expert User

Contents

Chapter 1 Overview

1-1 General 1
1-2 Hardware Code 2
1-3 Programming Port 2
1-4 Keys and Displays 3
1-5 Menu Overview 4
1-6 Parameter Descriptions 5
Chapter 2 Installation
2-1 Unpacking 7
2-2 Mounting 7
2-3 Wiring Precautions 7
2-4 Power Wiring 8
2-5 Sensor Installation Guidelines 8
2-6 Sensor Input Wiring 8
2-7 Control Output Wiring 8
2-8 Alarm Wiring 10
2-9 Data Communication 10
Chapter 3 Programming
3-1 Lockout 11
3-2 Signal Input 11
3-3 Control Outputs 11
3-4 Alarm 13
3-5 Configuring the Display 14
3-6 Ramp 14
3-7 Dwell Timer 14
3-8 PV Shift 15
3-9 Digital Filter 15
3-10 Failure Transfer 15
3-11 Auto-tuning 16
3-12 Manual tuning 16
3-13 Manual Control 17
3-14 Data communication. 17
3-15 Process Variable (PV) Retransmission 17
Chapter 4 Applications
4-1 Heat Only Control With Dwell Timer 18
4-2 Cool Only Control 18
4-3 Heat-Cool Control 19
Chapter 5 Not Applicable
Chapter 6 Specifications 20
Chapter 7 Modbus Communications
7-1 Functions Supported 22
7-2 Exception Responses 23
7-3 Parameter Table 23
7-4 Data Conversion 25
7-5 Communication Examples 26

NOTE:

It is strongly recommended that a process should incorporate a LIMIT CONTROL like TEC-910 which will shut down the equipment at a preset process condition in order to preclude possible damage to products or system.
Information in this user's manual is subject to change without notice.
Copyright © 2021, Tempco Electric Heater Corporation, all rights reserved. No part of this publication may be reproduced, transmitted, transcribed or stored in a retrieval system, or translated into any language in any form by any means without the written permission of Tempco Electric Heater Corporation.
Figures \& TablesPage
Number
Figure 1.1 Fuzzy Control Advantage 1
Figure 1.2 Programming Port Overview 2
Figure 1.3 Front Panel Description 3
Figure 1.4 Display in Initial Stage. 3
Figure 2.1 Mounting Dimensions and Panel Cutout 7
Figure 2.2 Lead Termination for TEC-920 7
Figure 2.3 Lead Termination for TEC-220 7
Figure 2.4 Rear Terminal Connection for TEC-220 8
Figure 2.5 Rear Terminal Connection for TEC-920 8
Figure 2.6 Power Supply Connections 8
Figure 2.7 Sensor Input Wiring 8
Figure 2.8 Output 1 Relay or Triac (SSR) to Drive Load 8
Figure 2.9 Output 1 Relay or Triac (SSR) to Drive Contactor 8
Figure 2.10 Output 1 Pulsed Voltage to Drive SSR 9
Figure 2.11 Output 1 Linear Current 9
Figure 2.12 Output 1 Linear Voltage 9
Figure 2.13 Output 2 Relay or Triac (SSR) to Drive Load 9
Figure 2.14 Output 2 Relay or Triac (SSR) to Drive Contactor 9
Figure 2.15 Output 2 Pulsed Voltage to Drive SSR 9
Figure 2.16 Output 2 Linear Current 9
Figure 2.17 Output 2 Linear Voltage 9
Figure 2.18 Alarm Output to Drive Load 10
Figure 2.19 Alarm Output to Drive Contactor 10
Figure 2.20 RS-485 Wiring 10
Figure 2.21 RS-232 Wiring 10
Figure 2.22 Configuration of RS-232 Cable 10
Figure 3.1 Conversion Curve for Linear Type Process Value 11
Figure 3.2 Heat Only ON-OFF Control 12
Figure 3.3 Output 2 Deviation High Alarm 13
Figure 3.4 Output 2 Process Low Alarm 13
Figure 3.5 RAMP Function 14
Figure 3.6 Dwell Timer Function 14
Figure 3.7 PV Shift Application 15
Figure 3.8 Filter Characteristics 15
Figure 3.9 Effects of PID Adjustment 16
Figure 4.1 Heat Control Example. 18
Figure 4.2 Cooling Control Example 18
Figure 4.3 Heat-Cool Control Example 19
Table 1.1 Display Form of Characters 3
Table 3.1 Heat-Cool Control Setup Value 11
Table 3.2 PID Adjustment Guide 16
Table A. 1 Error Codes and Corrective Actions 27
Appendix
A-1 Error Codes 27
A-2 Returns, Technical Support 28

1-1 General

Tempco's TEC-220 and TEC-920 Fuzzy Logic plus PID microprocessor-based controllers incorporate a bright easy to read 4-digit LED display indicating process value or set point. Fuzzy Logic technology enables a process to reach a predetermined set point in the shortest time with a minimum of overshoot during power-up or external load disturbances.
The TEC-220 is a $1 / 32$ DIN size panel mount controller. The TEC-920 is a $1 / 16$ DIN size panel mount controller. These units are powered by $11-26$ or $90-250 \mathrm{VDC} / \mathrm{VAC} 50 / 60 \mathrm{~Hz}$ supply, incorporating a 2 Amp control relay output as a standard. The second output can be used as a cooling control, an alarm or a dwell timer. Either output can use a triac, 5 V logic output, linear current or linear voltage to drive an external device. There are six types of alarms or a dwell timer that can be configured for the second output. The units are fully programmable for PT100 RTD and thermocouple types J, K, T, E, B, R, S, N, and L with no need to modify the unit. The input signal is digitized by using an 18bit A to D converter. Its fast sampling rate allows the unit to control fast processes.
Digital communications RS-485 is available for the TEC-220 or TEC-920. RS-232 is available for the TEC-220 only. These options allow the units to be integrated with supervisory control systems and software.

A programming port is available for automatic configuration, without the need to access the keys on the front panel.
By using proprietary Fuzzy modified PID technology, the control loop will minimize overshoot and undershoot in a short time. The following diagram is a comparison of results with and without Fuzzy technology.

Figure 1-1 Fuzzy Control Advantage

High accuracy

This series is manufactured with custom designed ASIC (Application Specific Integrated Circuit) technology which contains an 18-bit A to D converter for high resolution measurement (true $0.1^{\circ} \mathrm{F}$ resolution for thermocouple and RTD) and a 15 -bit D to A converter for linear current or voltage control output. The ASIC technology provides improved operating performance, low cost, enhanced reliability, and higher density.

Fast sampling rate

The sampling rate of the input A to D converter is 5 times/second. The fast sampling rate allows this series to control fast processes.

Fuzzy control

The function of Fuzzy control is to adjust PID parameters from time to time in order to make manipulation of the output value more flexible and adaptive to various processes. The result is to enable a process to reach a predetermined set point in the shortest time with the minimum of overshoot and undershoot during power-up or external load disturbance.

Digital communication

The units are equipped with an optional RS-485 or RS-232 interface cards to provide digital communication. By using the twisted pair wires up to 247 units can be connected together via RS-485 interface to a host computer.

Programming port

A programming port can be used to connect the unit to a PC for quick configuration.

Auto-tune

The auto-tune function allows the user to simplify initial setup for a new system. An advanced algorithm is used to obtain an optimal set of control parameters for the process, and it can be applied either as the process is warming up (cold start) or when the process is in a steady state (warm start).

Lockout protection

Depending on security requirements, one of four lockout levels can be selected to prevent the unit from being changed without permission.

Bumpless transfer

Bumpless transfer allows the controller to continue to control if the sensor breaks by using its previous value. Hence, the process can be controlled temporarily as if the sensor reading is normal and constant.

Soft-start ramp

The ramping function is performed during power up as well as any time the set point is changed. It can be ramping up or ramping down. The process value will reach the set point at a predetermined constant rate.

Digital filter

A first order low pass filter with a programmable time constant is used to improve the stability of the process value. This is particularly useful in certain applications where the process value is too unstable to be read.

TEC-220 -TEC-920 -

Power Input
$4=90-250 \mathrm{Vac}$
$5=11-26 \mathrm{Vac} / \mathrm{Vdc}$

Signal Input

Universal, can be programmed in the field for item 5 or 6
5 = TC: *J,K,T,E,B,R,S,N,L

$$
0-60 \mathrm{mV}
$$

6 = RTD: *PT100 DIN,
PT100 JIS
$7=0-1 \mathrm{Vdc}$
$8=* 0-5,1-5 \mathrm{Vdc}$
$\mathrm{A}=0-10 \mathrm{Vdc}$
$\mathrm{B}=* 4-20,0-20 \mathrm{~mA}$
*indicates default value

Output 1
1 = Relay: 2A / 240 Vac
$2=$ Pulse dc for SSR drive:
$5 \mathrm{Vdc}(30 \mathrm{~mA}$ max)
3 = Isolated, $4-20 \mathrm{~mA}$ (default)
$0-20 \mathrm{~mA}$
4 = Isolated, Vdc, 1-5 (default)
$0-5,0-1$
5 = Isolated, Vdc, 0-10
$6=$ Triac-SSR output
1A / 240 Vac
$\mathrm{C}=$ Pulse dc for SSR drive:
14 Vdc (40 mA max)

1-3 Programming Port

A special connector can be used to connect the programming port to a PC for automatic configuration.
The programming port is used for offline automatic setup and testing procedures only. Don't attempt to make any connection to these pins when the unit is under power.

Output 2 / Alarm 1
$0=$ None
1 = Relay: 2A / 240 Vac
$2=$ Pulse dc for SSR drive:
$5 \mathrm{Vdc}(30 \mathrm{~mA}$ max $)$
$3=$ Isolated, $4-20 \mathrm{~mA}$
(default), $0-20 \mathrm{~mA}$
4 = Isolated Vdc, 1-5
(default), 0-5, 0-1
$5=$ Isolated Vdc, 0-10
6 = Triac-SSR output 1A / 240 Vac
7 = RS-485 Data Interface, TEC 920 only
8 = Isolated 20V @ 25 mADC ,
Output Power Supply
A = Isolated 12V @ 40 mADC ,
Output Power Supply
$9=$ Isolated $5 \mathrm{~V} @ 80 \mathrm{mADC}$,
Output Power Supply
$\mathrm{C}=$ Pulse dc for SSR drive:
14 Vdc (40 mA max)

TEC-220 ONLY

Communication
$0=$ None
$1=$ RS-485 Interface
$2=$ RS-232 Interface
$3=$ Retransmission 4-20 mA (default), $0-20 \mathrm{~mA}$
$4=$ Retransmission 1-5 Vdc (default), $0-5 \mathrm{Vdc}$
$5=$ Retransmission 0-10 Vdc

Units - ${ }^{\circ} \mathrm{F}$ or ${ }^{\circ} \mathrm{C}$
$1={ }^{\circ} \mathrm{F}$ on faceplate
$2={ }^{\circ} \mathrm{C}$ on faceplate

Figure 1.2
Programming Port Overview

Open Housing
Top view of TEC-920

1-4 Keys and Displays

KEYPAD OPERATION

SCROLL KEY: \square

This key is used to select a parameter to be viewed or adjusted.

UP KEY:

This key is used to increase the value of the selected parameter.

Figure 1.3
DOWN KEY:

This key is used to decrease the value of the selected parameter.

RESET KEY: Ω for TEC-920, $\Delta \square$ for TEC-220
This key is used to:

1. Revert the display to show the process value.
2. Reset the latching alarm, once the alarm condition is removed.
3. Stop the manual control mode, auto-tuning mode, and calibration mode.
4. Clear the message of communication error and auto-tuning error.
5. Restart the dwell timer when the dwell timer has timed out.
6. Enter the manual control menu when in failure mode.

ENTER KEY: Press Ω for 5 seconds or longer.
Press Ω for 5 seconds to:

1. Enter setup menu. The display shows $5 E t$.
2. Enter manual control mode - when manual control mode $H \ldots$ or $\ldots \ldots$ is selected.
3. Enter auto-tuning mode - when auto-tuning mode $A-t$ (for 220) or AT (for 920) is selected.
4. Perform calibration to a selected parameter during the calibration procedure.
Press Ω for 6.2 seconds to select calibration mode.

Table 1.1 Display Form of Characters

A	9	E	E	।		N	n	S	5	X	
B	\square	F	F	J	」	0	\square	T	t	Y	y
C	L	G	L	K	L	P	P	U	4	Z	
C	C	H	H	L	L	Q		V	$\underline{\square}$?	P
D	d	h	h	M	-	R	r	W		=	$=$

F: Abstract Characters

Displays program code of the instrument for 2.5 seconds.

The diagram at left shows program no. 34, version 16 for the TEC-920.

The program no. is 33 for the TEC-220.

Figure 1.4
Display in Initial Stage

1-6 Parameter Descriptions

Parameter Notation	Parameter Description (Refer to Page:)	Range	Default Value
$\begin{aligned} & \hline \text { SPI } \\ & \text { SP1 } \end{aligned}$	Set point for output 1	Low: SP1L High: SP1H	$\begin{gathered} 77.0^{\circ} \mathrm{F} \\ \left(25.0^{\circ} \mathrm{C}\right) \end{gathered}$
$\begin{aligned} & 5 P 2 \\ & \text { SP2 } \end{aligned}$	Set point for output 2 when output 2 performs alarm function or dwell timer	Low: -19999 High: 45536	$\begin{gathered} 18.0^{\circ} \mathrm{F} \\ \left(10.0^{\circ} \mathrm{C}\right) \end{gathered}$
$\begin{aligned} & \text { LoĽ } \\ & \text { LOCK } \end{aligned}$	Select parameters to be locked out (Page 11)	0) nonE : No parameters are locked 1) $S E E$: Setup data is locked 2) $u 5 E r$: Setup data and User data except Set point are locked 3) $A L L$: All data are locked	0
$\begin{aligned} & I \cap P L \\ & \text { INPT } \end{aligned}$	Input sensor selection (Page 11 \& 20)	0) $J_{-} \in[: J$ type thermocouple 1) $\breve{L}_{-} \in[: K$ type thermocouple 2) $t-t[: T$ type thermocouple 3) $E_{-} \in[$: E type thermocouple 4) $b_{-} t[$: B type thermocouple 5) $r_{-} t[$: R type thermocouple 6) $5-\epsilon[$: S type thermocouple 7) $n_{-} t[: N$ type thermocouple 8) $L-t C: L$ type thermocouple 9) Pt.dn: PT 100 ohms DIN curve 10) Pt.j5: PT 100 ohms JIS curve 11) $4-20: 4-20 \mathrm{~mA}$ linear current input 12) $0-20: 0-20 \mathrm{~mA}$ linear current input 13) $0-50: 0-60 \mathrm{mV}$ linear millivolt input 14) $0-1=0-1 \mathrm{~V}$ linear voltage input 15) $0-5 \pm: 0-5 \mathrm{~V}$ linear voltage input 16) $1-5: 1-5 \mathrm{~V}$ linear voltage input 17) $0-10: 0-10 \mathrm{~V}$ linear voltage input	$\begin{gathered} 1 \\ (0) \end{gathered}$
unit UNIT	Input unit selection	0) ${ }^{0}[$ Degree C unit 1) σF : Degree F unit 2) P_{u} : Process unit	$\begin{gathered} 0 \\ (1) \end{gathered}$
$\begin{aligned} & d P \\ & D P \end{aligned}$	Decimal point selection	0) $\operatorname{nod}^{\prime} P$: No decimal point 1) $1-d^{\prime} P: 1$ decimal digit 2) $コ-d P: 2$ decimal digits 3) $3-d P: 3$ decimal digits	0
مini INLO	Input low scale value (Page 11)	Low: -19999 High: 45486	$\begin{gathered} 0^{\circ} \mathrm{F} \\ \left(-17.8^{\circ} \mathrm{C}\right) \end{gathered}$
inH, INHI	Input high scale value (Page 11)	Low: INLO+50 High: 45536	$\begin{aligned} & 200.0^{\circ} \mathrm{F} \\ & \left(93.3^{\circ} \mathrm{C}\right) \end{aligned}$
$\begin{aligned} & 5 P 1 L \\ & \text { SP1L } \end{aligned}$	Low limit of set point (Page 11)	Low: -19999 High: 45536	$\begin{gathered} 0^{\circ} \mathrm{F} \\ \left(-17.8^{\circ} \mathrm{C}\right) \end{gathered}$
$\begin{aligned} & 5 P 1 H \\ & \text { SP1H } \end{aligned}$	High limit of set point value (Page 11)	Low: SP1L High: 45536	$\begin{aligned} & 1000^{\circ} \mathrm{F} \\ & \left(538^{\circ} \mathrm{C}\right) \end{aligned}$
$\begin{aligned} & \text { SH,F } \\ & \text { SHIF } \end{aligned}$	PV shift (offset) value (Page 15)	$\text { Low: } \begin{gathered} -360.0^{\circ} \mathrm{F} \\ \left(-200.0^{\circ} \mathrm{C}\right) \end{gathered} \text { High: } \begin{gathered} 360.0^{\circ} \mathrm{F} \\ \left(200.0^{\circ} \mathrm{C}\right) \end{gathered}$	0.0
FiLE FILT	Filter damping time constant of PV (Page 15)	0) I: 0 second time constant 1) $\bar{D} \overline{\bar{L}^{\prime}}: 0.2$ second time constant 2) $\Omega .5: 0.5$ second time constant 3) i: 1 second time constant 4) $己: 2$ seconds time constant 5) 5:5 seconds time constant 6) 10: 10 seconds time constant 7) $2 \Omega: 20$ seconds time constant 8) $30: 30$ seconds time constant 9) $50: 60$ seconds time constant	2
$\begin{aligned} & \text { disp } \\ & \text { DISP } \end{aligned}$	Normal display selection	0) $P \underline{I}$: Display process value 1) $5 P$: Display set point 1 value	0

Parameter Notation	Parameter Description (Refer to Page:)	Range	Default Value
$\begin{aligned} & \text { Pb } \\ & \text { PB } \end{aligned}$	Proportional band value (Page 16)	Low: $0 \quad$ High:$900.0^{\circ} \mathrm{F}$ $\left(500.0^{\circ} \mathrm{C}\right)$	$\begin{aligned} & 18.0^{\circ} \mathrm{F} \\ & \left(10.0^{\circ} \mathrm{C}\right) \end{aligned}$
k_{1} TI	Integral time value	Low: 0 High: 1000 sec	100
$\begin{aligned} & \hline \text { to' } \\ & \text { TD } \end{aligned}$	Derivative time value	Low: $0 \quad$ High: 360.0 sec	25.0
$\begin{aligned} & \text { outi } \\ & \text { OUT1 } \end{aligned}$	Output 1 function	0) $\boldsymbol{r} E \leq r$: Reverse (heating) 1) $d \boldsymbol{d} \boldsymbol{r}$: : Direct (cooling) control action	0
$\begin{gathered} \text { olty } \\ \text { OlTY } \end{gathered}$	Output 1 signal type (Page 20)	0) $\Gamma E L S$: Relay output 1) 55 rd : Solid state relay drive output 2) $55 r$: Solid state relay output 3) $4-20: 4-20 \mathrm{~mA} \mathrm{DC}$ 4) $B-20: 0-20 \mathrm{mADC}$ 5) $0-1: 10-1 \mathrm{VDC}$ 6) $0-5 \underline{U}: 0-5 V D C$ 7) $t-5 \leq: 1-5 V D C$ 8) $\boldsymbol{B}-10: 0-10 \mathrm{VDC}$	0
$\begin{aligned} & \text { olft } \\ & \text { O1FT } \end{aligned}$	Output 1 failure transfer mode (Page 15)	Select BPLS (bumpless transfer) or 0.0-100.0\% to continue output 1 control function as the unit fails, or select OFF (0) or ON (1) for ON-OFF control.	0
01 HS O1HY	Output 1 ON-OFF hysteresis (Page 12)	Low: 0.1 High: $\begin{gathered}90^{\circ} \mathrm{F} \\ \left(50.0^{\circ} \mathrm{C}\right)\end{gathered}$	$\begin{gathered} 0.2^{\circ} \mathrm{F} \\ \left(0.1^{\circ} \mathrm{C}\right) \end{gathered}$
$\begin{aligned} & \text { CUC1 } \\ & \text { CYC1 } \end{aligned}$	Output 1 cycle time	Low: 0.1 High: 90.0 sec .	18.0
$\begin{gathered} \text { ofSt } \\ \text { OFST } \end{gathered}$	Offset value for P control	Low: 0 High: 100.0\%	25.0
$\begin{aligned} & \text { rRñp } \\ & \text { RAMP } \end{aligned}$	Ramp function selection (Page 14)	0) $\cap \square \cap E$: No ramp function 1) \cap ו ก.r : Use unit/minute as Ramp Rate 2) Hr.r : Use unit/hour as Ramp Rate	0
$\begin{aligned} & \hline r r \\ & \text { RR } \end{aligned}$	Ramp rate (Page 14)	Low: $0 \quad$ High: ${ }_{\left(500.0^{\circ} \mathrm{C}\right)}^{900}{ }^{\circ} \mathrm{F}$	0.0
out2 OUT2	Output 2 function (Page 13 \& 20)	0) nanE: Output 2 No Function 1) $L, \bar{n} r:$ Dwell timer action 2) $d E \cdot H_{1}$: Deviation High 3) $d E \cdot L \square:$ Deviation Low 4) db. H_{1} : Deviation band out of band alarm 5) $d b L \square:$ Deviation band in band alarm 6) P ㄴ․H. : Process High 7) PUI a : Process Low 8) [ooL: Cooling PID Function	2
$\begin{aligned} & \text { ozty } \\ & \text { O2TY } \end{aligned}$	Output 2 signal type (Page 20)	0) $r E L \zeta:$ Relay output 1) $55 r d$: Solid state relay drive output 2) $55 r$: Solid state relay output 3) $4-20: 4-20 \mathrm{~mA} \mathrm{DC}$ 4) $\Omega-2 \Omega: 0-20 \mathrm{~mA} \mathrm{DC}$ 5) $\boldsymbol{B}-\boldsymbol{1}$: 0 - 1VDC 6) $\mathbf{B}-5 \underline{-}$: 0-5V DC 7) $\mathbf{i}-5 \underline{\Delta}: 1-5 V D C$ 8) $\boldsymbol{B}-1 \boldsymbol{1}$: 0-10V DC	0
$\begin{aligned} & \text { OZFE } \\ & \text { O2FT } \end{aligned}$	Output 2 failure transfer mode (Page 15)	Select BPLS (bumpless transfer) or 0.0-100.0\% to continue output 2 control function as the unit fails, or select OFF (0) or ON (1) for alarm function.	0

Parameter Notation	Parameter Description (Refer to Page:)	Range	Default Value
$\begin{gathered} \text { ozHy } \\ \text { O2HY } \end{gathered}$	Output 2 hysteresis value when output 2 performs alarm function	Low: 0.1 High: $\begin{aligned} & 90.0^{\circ} \mathrm{F} \\ & \left(50.0^{\circ} \mathrm{C}\right)\end{aligned}$	$\begin{gathered} 0.2^{\circ} \mathrm{F} \\ \left(0.1^{\circ} \mathrm{C}\right) \end{gathered}$
$\begin{aligned} & \text { ᄃUC2 } \\ & \text { CYC2 } \end{aligned}$	Output 2 cycle time	Low: 0.1 High: 90.0 sec.	18.0
$\begin{aligned} & \text { CPb } \\ & \text { CPB } \end{aligned}$	Cooling proportional band value (Page 12)	Low: 50 High: 300\%	100
$\begin{aligned} & \text { ob } \\ & \text { DB } \end{aligned}$	Heating-cooling dead band (negative value= overlap) (Page 12)		0
RL̄ㅡ' ALMD	Alarm operation mode (Page 13)	0) $\operatorname{nor} \bar{n}$: Normal alarm action 1) Ltch: Latching alarm action 2) HoL $d:$ Hold alarm action 3) Lt.Ho: Latching \& Hold action	0
ᄃ๐ก̄ก̄ COMM	Communication function (Page 17 \& 24)	0) $n o n E$: No communication 1) rtu : Modbus RTU mode protocol 2) $4-20: 4-20 \mathrm{~mA}$ retransmission output 3) $0-20: 0-20 \mathrm{~mA}$ retransmission output 4) $0-5$ - $: 0-5 \mathrm{~V}$ retransmission output 5) $1-5$ - 1 : $1-5 \mathrm{~V}$ retransmission output 6) $0-10: 0-10 \mathrm{~V}$ retransmission output	1
Ro'o'r ADDR	Address assignment for digital communication	Low: $1 \quad$ High: 255	-
bruod BAUD	Baud rate of digital communication (Page 23)	0) $2.4: 2.4 \mathrm{Kbits} / \mathrm{s}$ baud rate 1) $4.8: 4.8 \mathrm{Kbits} / \mathrm{s}$ baud rate 2) $9.5: 9.6 \mathrm{Kbits} / \mathrm{s}$ baud rate 3) $14.4: 14.4 \mathrm{Kbits} / \mathrm{s}$ baud rate 4) $19.2: 19.2 \mathrm{Kbits} / \mathrm{s}$ baud rate 5) $2.8 .8: 28.8 \mathrm{Kbits} / \mathrm{s}$ baud rate 6) $38.4: 38.4 \mathrm{Kbits} / \mathrm{s}$ baud rate	2
$\begin{gathered} \text { o'RLR } \\ \text { DATA } \end{gathered}$	Data bit count of digital communication	0) $7 \boldsymbol{7}$, $ட: 7$ data bits 1) B b, $\llcorner: 8$ data bits	1
PRirı PARI	Parity bit of digital communication	0) $E \cup E n$: Even parity 1) odd: Odd parity 2) $\operatorname{non} E$: No parity bit	0
$\begin{aligned} & \text { SLoP } \\ & \text { STOP } \end{aligned}$	Stop bit count of digital communication	0) Ib, $દ$: One stop bit 1) \mathcal{Z} bı L : Two stop bits	0
$\begin{gathered} \text { rELO } \\ \text { RELO } \end{gathered}$	Retransmission low scale value (Page 17)	Low: -19999 High: 45536	$\begin{aligned} & 32.0^{\circ} \mathrm{F} \\ & \left(0.0^{\circ} \mathrm{C}\right) \end{aligned}$
$\begin{gathered} \text { rEH, } \\ \text { REHI } \end{gathered}$	Retransmission high scale value (Page 17)	Low: INLO+50 High: 45536	$\begin{array}{\|c\|} \hline 212.0^{\circ} \mathrm{F} \\ \left(100.0^{\circ} \mathrm{C}\right) \\ \hline \end{array}$

$\begin{array}{l}\text { Parameter } \\ \text { Notation }\end{array}$	Parameter Description (Refer to Page:)	Range	$\begin{aligned} & \text { Default } \\ & \text { Value } \end{aligned}$
SEL: SEL1	Select 1st parameter for user menu (Page 4)		2
$\begin{aligned} & \text { SEL2 } \\ & \text { SEL2 } \end{aligned}$	Select 2nd parameter for user menu	Same as SEL1	3
$\begin{aligned} & \text { SEL3 } \\ & \text { SEL3 } \end{aligned}$	Select 3rd parameter for user menu	Same as SEL1	4
$\begin{aligned} & \text { SELY } \\ & \text { SEL4 } \end{aligned}$	Select 4th parameter for user menu	Same as SEL1	6
$\begin{aligned} & \text { SEL5 } \\ & \text { SEL5 } \end{aligned}$	Select 5th parameter for user menu	Same as SEL1	7
$\begin{aligned} & \text { SELS } \\ & \text { SEL6 } \end{aligned}$	Select 6th parameter for user menu	Same as SEL1	8
$\begin{aligned} & \text { SEL7 } \\ & \text { SEL7 } \end{aligned}$	Select 7th parameter for user menu	Same as SEL1	10
$\begin{aligned} & \text { SEL8 } \\ & \text { SEL8 } \end{aligned}$	Select 8th parameter for user menu	Same as SEL1	17

Chapter 2 Installation

今Dangerous voltages capable of causing death are sometimes present in this instrument. Before installation or beginning any troubleshooting procedures, the power to all equipment must be switched off and isolated. Units suspected of being faulty must be disconnected and removed to a properly equipped workshop for testing and repair. Component replacement and internal adjustments must be made by a qualified maintenance person only.

This instrument is protected by double insulation. To minimize the possibility of fire or shock hazards do not expose this instrument to rain or excessive moisture.

Do not use this instrument in areas under hazardous conditions such as excessive shock, vibration, dirt, moisture, corrosive gases or oil. The ambient temperature of the area should not exceed the maximum rating specified in chapter 6.

Remove stains from this instrument using a soft, dry cloth. To avoid deformation or discoloration do not use harsh chemicals, volatile solvent such as thinner or strong detergents to clean this instrument.

Figure 2.1
Mounting Dimensions

2-3 Wiring Precautions

- Before wiring, verify the correct model number and options on the label. Switch off the power while checking.
- Care must be taken to ensure that the maximum voltage rating specified on the label is not exceeded.
- It is recommended that the power for these units be protected by fuses or circuit breakers rated at the minimum value possible.
- All units should be installed in a suitable enclosure to prevent live parts from being accessible to human hands and metal tools. Metal enclosures and/or subpanels should be grounded in accordance with national and local codes.
- All wiring must conform to appropriate standards of good practice and local codes and regulations. Wiring must be suitable for the voltage, current, and temperature rating of the system.
- Beware not to over-tighten the terminal screws. The torque should not exceed $1 \mathrm{~N}-\mathrm{m}$ ($8.9 \mathrm{lb}-\mathrm{in}$ or $10 \mathrm{KgF}-\mathrm{cm}$).
- Unused control terminals should not be used as jumper points as they may be internally connected, causing damage to the unit.
- Verify that the ratings of the output devices and the inputs as specified are not exceeded.
- Except for thermocouple wiring, all wiring should use stranded copper conductor with a maximum gage of 14 AWG.
- Electrical power in industrial environments contains a certain amount of noise in the form of transient voltage and spikes. This electrical noise can adversely affect the operation of microprocessor-based controls. For this reason the use of shielded thermocouple extension wire which connects the sensor to the controller is strongly recommended. This wire is a twisted-pair construction with foil wrap and drain wire. The drain wire is to be attached to ground in the control panel only.

2-1 Unpacking

Upon receipt of the shipment, remove the unit from the carton and inspect the unit for shipping damage.

2-2 Mounting

Make the panel cutout according to the dimensions shown in Figure 2.1.
Take the mounting clamp away and insert the controller into the panel cutout. Reinstall the mounting clamp.

Note: All model TEC-220 controls are supplied with both mounting clamps and mounting screws. The mounting screws have to be used in NEMA 4X applications as they allow the control to be held tighter into the panel. The mounting clamp teeth are released by depressing the ends of the clamp together.

Spade Connector for \#6 Stud
Figure 2.2
Lead Termination for TEC-920

Figure 2.3
Lead Termination for TEC-220

Transit Damage

If there is any damage due to transit, report it and file a claim with the carrier. Write down the model number, serial number, and date code for future reference when corresponding with our service center. The serial number $(\mathrm{S} / \mathrm{N})$ is labeled on the box and the housing of the control.

Wiring, continued...

Wiring, continued...

Figure 2.4
Rear Terminal Connections for TEC-220

2-4 Power Wiring

The controller is designed to operate at $11-26 \mathrm{VAC} / \mathrm{VDC}$ or $90-250$ VAC. Check that the input voltage corresponds to the power rating indicated on the product label before connecting power to the controller.

Figure 2.6
Power Supply Connections

2-5 Sensor Installation Guidelines

Proper sensor installation can eliminate many problems in a control system. The probe should be placed so that it can detect any temperature change with minimal thermal lag. In a process that requires fairly constant heat output, the probe should be placed close to the heater. In a process where the heat demand is variable, the probe should be close to the work area. Some experimentation with probe location is often required to find the optimum position. In a liquid process, the addition of a stirrer will help to eliminate thermal lag. Since the thermocouple is basically a point measuring device, placing more than one thermocouple in parallel can provide an average temperature readout and produce better results in most air heated processes. Proper sensor type is also a very important factor in obtaining precise measurements. The sensor must have the correct temperature range to meet the process requirements. In special processes, the sensor might have requirements such as leak-proof, anti-vibration, antiseptic, etc.
Standard sensor limits of error are $\pm 4^{\circ} \mathrm{F}\left(\pm 2^{\circ} \mathrm{C}\right)$ or 0.75% of the sensed temperature (half that for special) plus drift caused by improper protection or an over-temperature occurrence. This error is far greater than controller error and cannot be corrected on the sensor except by proper selection and replacement.

2-6 Sensor Input Wiring

2-7 Control Output Wiring

Figure 2.8
Output 1 Relay or Triac (SSR) to Drive Load

Figure 2.9
Output 1 Relay or Triac (SSR) to Drive Contactor

Figure 2.7

Control Output Wiring, continued...

Figure 2.10 Output 1 Pulsed Voltage to Drive SSR

Figure 2.14 Output 2 Relay or Triac (SSR) to Drive Contactor

Figure 2.11 Output 1 Linear Current

Figure 2.15 Output 2 Pulsed Voltage to Drive SSR

Figure 2.12 Output 1 Linear Voltage

Figure 2.13 Output 2 Relay or Triac (SSR) to Drive Load

Figure 2.17 Output 2 Linear Voltage

2-8 Alarm Wiring

Figure 2.18 Alarm Output to Drive Load

Figure 2.19 Alarm Output to Drive Contactor

2-9 Data Communication

Figure 2.20 RS-485 Wiring

Chapter 3 Programming

Press \square for 5 seconds and release to enter the setup menu. Press and release \square to select the desired parameter. The display indicates the parameter symbol. Press Δ or ∇ to view or adjust the value of the selected parameter.

3-1 Lockout

There are four security levels that can be selected using the LOCK parameter.
If NONE is selected for LOCK, then no parameter is locked. If SET is selected for LOCK, then all setup data are locked. If USER is selected for LOCK, then all setup data as well as user data (refer to section 1-5) except the set point are locked to prevent them from being changed.
If ALL is selected for LOCK, then all parameters are locked to prevent them from being changed.

How to use Conversion Curve for

Process Value:

If $4-20 \mathrm{~mA}$ is selected for INPT, SL specifies the input signal low (i.e., 4 mA), SH specifies the input signal high (i.e., 20 mA), S specifies the current input signal value, and the conversion curve of the process value is shown as follows:

Example: A 4-20 mA current loop pressure transducer with range $0-15 \mathrm{~kg} / \mathrm{cm} 2$ is connected to input, then perform the following setup:
INPT $=4-20 \quad$ INLO $=0.00$
$\mathrm{INHI}=15.00$
DP = 2-DP
Of course, you may select other value for DP to alter the resolution.
SL $=$ Setpoint Low Limit \quad SH $=$ Setpoint High Limit

3-2 Signal Input

INPT: Selects the sensor type or signal type for signal input.
Range: (thermocouple) Type J, K, T, E, B, R, S, N, L (RTD) PT.DN, PT.JS (Linear) 4-20 mA, 0-20 mA, 0-60 mA, 0-1V, $0-5 \mathrm{~V}, 1-5 \mathrm{~V}, 0-10 \mathrm{~V}$
UNIT: Selects the process unit
Range: ${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \mathrm{PU}$ (process unit). If the unit is set for neither ${ }^{\circ} \mathrm{C}$ nor ${ }^{\circ} \mathrm{F}$, then it defaults to PU .
DP: Selects the resolution of process value.
Range: (For T/C and RTD) NO.DP, 1-DP (For linear) NO.DP, 1-DP, 2-DP, 3-DP
INLO: Selects the low scale value for the linear type input.
INHI: Selects the high scale value for the linear type input.

3-3 Control Outputs

There are four kinds of control modes that can be configured as shown in table 3.1.
Table 3.1 Heat-Cool Control Setup Value

Control Modes	OUT1	OUT2	O1HY	O2HY	CPB	DB
Heat only	REVR	\times	\searrow	\times	\times	\times
Cool only	DIRT	\times	\searrow	\times	\times	\times
Heat: PID Cool: ON-OFF	REVR	DE.HI	\times	\bigcirc	\times	\times
Heat: PID Cool: PID	REVR	COOL	\times	\times	\bigcirc	\bigcirc

X : Does not apply
○: Adjust to meet process
requirements

OUT1: Output 1 Type OUT2: Output 2 Type 01HY: Output 1 Hysteresis O2HY: Output 2 Hysteresis CPB:
Cooling Proportional Band DB: Heating Cooling Dead Band

Heat only ON-OFF control: Select REVR for OUT1. Set PB (Proportional Band) to 0.01 HY is used to adjust dead band for ON-OFF control. The output 1 hysteresis (O 1 HY) is enabled when $\mathrm{PB}=0$. The heat only on-off control function is shown in the following diagram:

Figure 3.2 Heat Only ON-OFF Control

The ON-OFF control may introduce excessive process oscillation even if hysteresis is minimized. If ON-OFF control is set (i.e., $\mathrm{PB}=0$), TI, TD, CYC1, OFST, CYC2, CPB, and DB will be hidden and have no function in the system. The auto-tuning and bumpless transfer function will be disabled as well.
Heat only P (or PD) control: Select H.TPC or H.L I N for OUT1 and set TI1 and TI2 to 0, OFST is used to adjust the control offset (manual reset). O 1 HY is hidden if PB is not equal to 0 .
OFST function: OFST is measured in \% with a range of 0-100.0\%.
In a steady state (i.e. process has stabilized at a temperature), if the process value is lower than the set point by a constant value (we'll say $5^{\circ} \mathrm{C}$) while the PB setting is set for $20^{\circ} \mathrm{C}$, we can say the temperature is lower than the setpoint by 25% of the PB setting. This can be corrected by increasing the OFST setting to 25%. After adjusting the OFST value, the process value will eventually coincide with set point.
Note that using the P control (TI set to 0), disables auto-tuning.
Refer to Section 3-12 "manual tuning" for the adjustment of P and PD. Manual reset (adjust OFST) is sometimes not practical since the load may change from time to time and OFST may need to be adjusted repeatedly. PID control can avoid this situation.
Heat only PID control: If REVR is selected for OUT1, PB and TI should not be zero. Perform auto-tuning for the new process, or set PB, TI, and TD with historical values. See section 3-11 for auto-tuning operation. If the control result is still unsatisfactory, then use manual tuning to improve control. See section 3-12 for manual tuning. The unit contains an advanced PID and Fuzzy algorithm to create a small overshoot and very quick response to the process if it is properly tuned.

Cool only control: ON-OFF control, P (PD) control, and PID control can be used for cool control. Set OUT1 to DIRT (direct action). The other functions for cool only ON-OFF control, cool only P (PD) control, and cool only PID control are the same as for heat only control except that the output variable (and action) for cool control is inverse to heat control.
NOTE: ON-OFF control may result in excessive overshoot and undershoot problems in the process. P (or PD) control will result in a deviation of process value from the set point. It is recommended to use PID control for heat-cool control to produce a stable and zero offset process value.
Other setup required: O1TY, CYC1, O2TY, CYC2, O1FT and O 2 FT are set in accordance with the types of OUT1 and OUT2 installed. CYC1 and CYC2 are selected according to the output 1 type (O1TY) and output 2 type (O2TY). Generally, select 0.5~2 seconds for CYC1 if SSRD or SSR is used for O1TY; 10~20 seconds if relay is used for O1TY and CYC1 is ignored if linear output is used. Similar conditions are applied for CYC2 selection.
You can use the auto-tuning program for the new process or directly set the appropriate values for PB, TI, and TD according to historical records for duplicate systems. If the control behavior is still inadequate, then use manual tuning to improve the control. See section 3-12 for manual tuning.
CPB (Cooling Proportional Band) Programming: The cooling proportional band is measured by \% of PB with a range of $50-300$. Initially set 100% for CPB and examine the cooling effect. If the cooling action should be enhanced, then decrease CPB, if the cooling action is too strong, then increase CPB. The value of CPB is related to PB and its value remains unchanged throughout the auto-tuning procedures.
Adjustment of CPB is related to the cooling medium used. If air is used as the cooling medium, initially set CPB to 100%, then adjust as necessary. If oil is used as the cooling medium, initially set CPB to 125%, then adjust as necessary. If water is used as the cooling medium, initially set CPB to 250%, then adjust as necessary.
DB (Heating-Cooling Dead Band) programming: The adjustment of DB is dependent on the system requirements. If a more positive value of DB (greater dead band) is used, an unwanted cooling action can be avoided but an excessive overshoot over the set point will occur. If a more negative value of DB (greater overlap) is used, an excessive overshoot over the set point can be minimized, but an unwanted cooling action will occur. It is adjustable in the range -36.0% to 36.0% of PB . A negative DB value shows an overlap area over which both outputs are active. A positive DB value shows a dead band area over which neither output is active.
Output 2 ON-OFF control (alarm function): Output 2 can also be configured with an alarm function. There are six kinds of alarm functions that can be selected for output 2. These are: DE.HI (deviation high alarm), DE.LO (deviation low alarm), DB.HI (deviation band out of band alarm), DB.LO (deviation band in band alarm), PV.HI (process high alarm), and PV.LO (process low alarm). Refer to figure 3.3 and figure 3.4 for descriptions of the deviation alarm and the process alarm.

Output 2 Deviation High Alarm

3-4 Alarm

Output 2 can be set as an alarm output. There are six types of alarm functions and one dwell timer that can be selected, and four kinds of alarm modes (ALMD) are available for each alarm function.
A process alarm sets two absolute trigger levels. When the process value is higher than SP2, a process high alarm (PV.HI) occurs. The alarm is off when the process value is lower than SP2-ALHY. When the process value is lower than SP2, a process low alarm (PV.LO) occurs, and the alarm is off when the process value is higher than SP2+ALHY. A process alarm is independent of the set point.
A deviation alarm alerts the user when the process value deviates too far from the set point. When the process value is higher than SV+SP2, a deviation high alarm (DE.HI) occurs, and the alarm is off when the process value is lower than SV+SP2-ALHY. When the process value is lower than SV+SP2, a deviation low alarm (DE.LO) occurs, and the alarm is off when the process value is higher than SV+SP2+ALHY. The trigger level of the deviation alarm moves with the set point.
A deviation band alarm presets two trigger levels relative to the set point. The two trigger levels are $\mathrm{SV}+\mathrm{SP} 2$ and SV-SP2 for alarm. When the process value is higher than (SV+SP2) or lower than (SV-SP2), a deviation band high alarm (DB.HI) occurs. When the process value is within the trigger levels, a deviation band low alarm (DB.LO) occurs.
There are four types of alarm modes available for each alarm function. These are: normal alarm, latching alarm, holding alarm and latching/holding alarm. They are described as follows:

Normal alarm: ALMD=NORM

When a normal alarm is selected, the alarm output is de-energized in the non-alarm condition and energized in an alarm condition.

Latching alarm: ALMD=LTCH

If a latching alarm is selected, once the alarm output is energized, it will remain unchanged even if the alarm condition is cleared. The latching alarm is reset when the RESET key is pressed after the alarm condition is removed.

Holding alarm: ALMD=HOLD

A holding alarm prevents an alarm when the control is powering up. The alarm is enabled only when the process reaches the set point value. Afterwards, the alarm performs the same function as a normal alarm.

Latching/holding alarm: ALMD=LT.HO

A latching/holding alarm performs both holding and latching functions. The latching alarm is reset when the RESET key is pressed after the alarm condition is removed.
Alarm failure transfer is activated as the unit enters failure mode. The alarm will go on if ALFT is set for ON and go off if ALFT is set for OFF. The unit will enter failure mode when a sensor break occurs or if the A-D converter of the unit fails.

3-5 Configuring the Display

The TEC-220 can be configured to display the process value by selecting PV for DISP or to display the set point value by selecting SP1 for DISP.
If LOCK is set to NONE, OUT2 is set to DEHI, and DISP is set to PV, set SEL1=SHIF, SEL2=ADDR. SEL3=PB, SEL4~SEL8=NONE, then the display scrolling for the TEC-220 will become:

If LOCK is set to NONE, OUT1 is set to REVR, a non-zero value is set for PB and TI, OUT2 is set to COOL, and DISP is set to SP1, set SEL1=INPT, SEL2=PB, SEL3=TI, SEL4~SEL8= NONE, then the display scrolling for the TEC-220 will become:

Example for TEC-920:

Set OUT2=PVLO, LOCK=NONE, SEL1=INPT, SEL2=UNIT, SEL3=DP, SEL4~SEL8=NONE, then the display scrolling for the TEC-920 will become:

3-6 Ramp

Ramp

The ramping function is performed during power up as well as any time the set point is changed. If MINR or HRR is chosen for RAMP, the unit will perform the ramping function. The ramp rate is programmed by adjusting RR . The ramping function is disabled as soon as failure mode, manual control mode, auto-tuning mode or calibration mode is entered.

Example without dwell timer

Select MINR for RAMP, select ${ }^{\circ} \mathrm{C}$ for UNIT, select 1-DP for DP, set $\mathrm{RR}=10.0$. SV is set to $200^{\circ} \mathrm{C}$ initially, and changed to $100^{\circ} \mathrm{C}$ 30 minutes after power-up. The starting temperature is $30^{\circ} \mathrm{C}$. After power-up, the process runs like the curve shown in Figure 3.5.

Figure 3.5 RAMP Function
Note: When the ramp function is used, the lower display will show the current ramping value. The ramping value is an artificially determined setpoint created and updated by the control to match the ramp rate set by the user. However, it will revert to show the set point value as soon as the up or down key is touched for adjustment. The ramping value is initiated to process value either on power-up or when RR and/or the set point are changed. Setting RR to zero means no ramp function.

3-7 Dwell Timer

Output 2 can be configured as a dwell timer by selecting TIMR for OUT2. As the dwell timer is configured, the parameter SP2 is used for dwell time adjustment. The dwell time is measured in minutes ranging from 0.1 to 4553.6 minutes. Once the process reaches the set point the dwell timer starts to count down to zero (time out). The timer relay will remain unchanged until time out. The dwell timer operation is shown in the following diagram.
After time out, the dwell timer can be restarted by pressing the RESET key.
The timer stops counting during manual control mode, failure mode, the calibration period and the auto-tuning period.

Figure 3.6 Dwell Timer Function
If output 2 is configured as a dwell timer, ALMD will be hidden.

3-8 PV Shift

In certain applications it is desirable to shift the controller display value from its actual value. This can easily be accomplished by using the PV shift function.
The SHIF function will alter PV only.
Here is an Example: A process is equipped with a heater, a sensor, and a subject to be warmed up. Due to the design and position of the components in the system, the sensor could not be placed any closer to the part. Thermal gradient (differing temperatures) is common and necessary to an extent in any thermal system for heat to be transferred from one point to another. If the difference between the sensor and the subject is $35^{\circ} \mathrm{C}$, and the desired temperature at the subject to be heated is $200^{\circ} \mathrm{C}$, the controlling value or the temperature at the sensor should be $235^{\circ} \mathrm{C}$. You should enter $-35^{\circ} \mathrm{C}$ to subtract $35^{\circ} \mathrm{C}$ from the actual process display. This in turn will cause the controller to energize the load and bring the process display up to the set point value.

Figure 3.7 PV Shift Application

3-9 Digital Filter

In certain applications, the process value is too unstable to be read due to possible electrical noise. A programmable low-pass filter incorporated in the controller can be used to improve this. It is a first-order filter with the time constant specified by the FILT parameter. The default value of FILT is set at 0.5 seconds before shipping. Adjust FILT to change the time constant from 0 to 60 seconds. 0 seconds means no filter is applied to the input signal. The filter is characterized in Figure 3.8.

Note

The filter is available only for PV, and is performed for the displayed value only. The controller is designed to use unfiltered signal for control even if the filter is applied. A lagged (filtered) signal, if used for control, may produce an unstable process.

3-10 Failure Transfer

The controller will enter failure mode if one of the following conditions occurs:

1. SBER occurs due to input sensor break or input current below 1 mA if $4-20 \mathrm{~mA}$ is selected or input voltage below 0.25 V if $1-5 \mathrm{~V}$ is selected.
2. ADER occurs due to the A-D converter of the controller failing.
Output 1 and output 2 will perform the failure transfer function as the controller enters failure mode.

Output 1 failure transfer, if activated, will perform:

1. If output 1 is configured as proportional control $(\mathrm{PB} \neq 0)$, and BPLS is selected for O1FT, then output 1 will perform bumpless transfer. Thereafter, the previous averaging value of MV1 will be used for controlling output 1.
2. If output 1 is configured as proportional control ($\mathrm{PB} \neq 0$), and a value of 0 to 100.0% is set for O1FT, then output 1 will perform failure transfer. Thereafter, the value of O1FT will be used for controlling output 1 .
3. If output 1 is configured as $\mathrm{ON}-\mathrm{OFF}$ control ($\mathrm{PB}=0$), then output 1 will be driven OFF if OFF is set for O1FT and will be driven ON if ON is set for O1FT.

3-11 Auto-tuning

\triangleFor best results the auto-tuning process should be performed near the set point. The process will oscillate around the set point during the tuning process. Set the set point at a lower value if overshooting beyond the normal process value is likely to cause damage.

Auto-tuning is applied in cases of:

- Initial setup for a new process
- The set point is changed substantially from the previous auto-tuning value
- The control result is unsatisfactory

Operation:

1. Do not set a zero value for PB and TI , or the auto-tuning program will be disabled. The LOCK parameter should also be set at NONE.
2. Set the set point to a normal operating value, or a lower value if overshooting beyond the normal process value is likely to cause damage.
3. Press Ω several times until $P-\boldsymbol{\theta}$ appears on the display (for TEC-220), or an AT indicator on lower-right of screen is lit (for TEC-920).
4. Press and hold Ω for at least 5 seconds. The AT indicator (for TEC-920) or the display (for TEC-220) will begin to flash indicating the auto-tuning procedure has begun.
NOTE: The ramping function, if used, will be disabled while auto-tuning is taking place.
Auto-tuning mode is disabled as soon as either failure mode or manual control mode is entered.

Procedures:

Auto-tuning can be applied either as the process is warming up (cold start), or when the process has been in a steady state (warm start). After the auto-tuning procedures are completed, the AT indicator will cease to flash and the unit will revert to PID control using its new PID values. The PID values obtained are stored in the nonvolatile memory.

REER Auto-Tuning Error

If auto-tuning fails an ATER message will appear on the display in the following cases:

- If PB exceeds 9000 ($9000 \mathrm{PU}, 900.0^{\circ} \mathrm{F}$ or $500.0^{\circ} \mathrm{C}$),
- if TI exceeds 1000 seconds,
- if the set point is changed during the auto-tuning procedure.

Solutions to REEr

1. Try auto-tuning again.
2. Don't change the set point value during the auto-tuning procedure.
3. Don't set a zero value for PB and TI.
4. Use manual tuning instead of auto-tuning (see section 3-12).
5. Touch RESET key to reset $G E E \square$ message.

3-12 Manual Tuning

In certain applications auto-tuning may be inadequate for the control requirements. You can try manual tuning for these applications.
If the control performance using auto-tuning is still unsatisfactory, the following rules can be applied for further adjustment of PID values:
$\overline{\text { Figure } 3.9 \text { shows the effects of PID }}$ adjustment on process response.

ADJUSTMENT SEQUENCE	SYMPTOM	SOLUTION
(1) Proportional Band (PB)	Slow Response	Decrease PB
	High overshoot or Oscillations	Increase PB
	Slow Response	Decrease TI
	Instability or Oscillations	Increase TI
(3) Derivative Time (TD)	Slow Response or Oscillations	Decrease TD
	High Overshoot	Increase TD

Table 3.2 PID Adjustment Guide

Figure 3.9 Effects of PID Adjustment

3-13 Manual Control

Operation:

To enable manual control, the LOCK parameter should be set to NONE.
Press Ω several times; H. . . (heating output) or \ldots (cooling output) will appear on the display. Press and hold \square for 5 seconds or until the MAN indicator (for TEC-920) or the display (for TEC-220) begins to flash. The controller is now in manual control mode. H. . . indicates output control variable for output 1, and \ldots indicates control variable for output 2 . Now you can use the up and down keys to adjust the percentage values for the heating or cooling output.
The controller performs open loop control as long as it stays in manual control mode.

Exit Manual Control

Model TEC-920: Pressing the R key will cause the controller to revert to its normal display mode.
Model TEC-220: Press and release the up and down buttons.

3-14 Data Communication

The controllers support RTU mode of Modbus protocol for data communication. Other protocols are not available for this series.
Two types of interface are available for data communication. These are RS-485 and RS-232. Since RS-485 uses a differential architecture to drive and sense signal instead of a single-ended architecture like the one used for RS-232, RS-485 is less sensitive to noise and more suitable for communication over a longer distance. RS-485 can communicate without error over a 1 km distance while RS-232 is not recommended for a distance of over 60 feet (20 meters).
Using a PC for data communication is the most economical method. The signal is transmitted and received through the PC communication port (generally RS-232). Since a standard PC can't support an RS-485 port, a network adapter (such as TEC99001) has to be used to convert RS-485 to RS-232 for a PC if RS-485 is required for data communication. Up to 247 RS-485 units can be connected to one RS-232 port; therefore a PC with four comm ports can communicate with 988 units.

Setup

Enter the setup menu. Select RTU for COMM. Set individual addresses for any units that are connected to the same port. Set the baud rate (BAUD), data bit (DATA), parity bit (PARI) and stop bit (STOP) so that these values are accordant with PC setup conditions.
If you use a conventional 9-pin RS-232 cable instead of TEC99014, the cable should be modified for proper operation of RS-232 communication according to section 2-9 on page 10 .

Refer to Chapter 7 for a complete technical description of the Modbus Communications Protocol.

3-15 Process Variable (PV) Retransmission

The TEC-220 controller can output (retransmit) a process value via its retransmission terminals RE+ and RE- provided that the retransmission option is ordered. The correct signal type should be selected for COMM parameter to meet the retransmission option installed. RELO and REHI are set to specify the low scale and high scale values of retransmission.
The TEC-920 does not have this feature.

4-1 Heat Only Control with
 Dwell Timer

An oven is designed to dry products at $150^{\circ} \mathrm{C}$ for 30 minutes and then stay unpowered for another batch. A TEC-920 equipped with dwell timer is used for this purpose. The system diagram is shown at right:
To achieve this function, set the following parameters in the setup menu:

INPT=K_TC	UNIT $={ }^{\circ} \mathrm{C}$
DP=1_DP	OUT1=REVR
O1TY=RELY	CYC1=18.0
O1FT=BPLS	OUT2=TIMR
O2FT=ON	

Auto-tuning is performed at $150^{\circ} \mathrm{C}$ for a new oven.

4-2 Cool Only Control

A TEC-920 is used to control a refrigerator at temperatures below $0^{\circ} \mathrm{C}$. This temperature is lower than the ambient, so a cooling action is required. Select DIRT for OUT1. Since output 1 is used to drive a magnetic contactor, the O1TY should be set for RELY. A small temperature oscillation is tolerable, so use ON-OFF control to reduce the over-all cost. To use ON-OFF control, set PB to zero and O 1 HY at $0.1^{\circ} \mathrm{C}$.

Figure 4.2 Cooling Control Example

4-3 Heat-Cool Control

An injection mold is required to be controlled at $120^{\circ} \mathrm{C}$ to ensure a consistent quality for the parts. An oil pipe is buried in the mold. Since plastics are injected at a higher temperature (e.g., $250^{\circ} \mathrm{C}$), the circulation oil needs to be cooled as its temperature rises. Here is an example:

The PID heat-cool operation is used for the above example. To achieve this, set the following parameters in the setup menu:

```
INPT=PT.DN
UNIT \(={ }^{\circ} \mathrm{C}\)
DP \(=1-\mathrm{DP}\)
OUT1=REVR
O1TY=RELY
CYC1=18.0 (sec.)
O1FT=BPLS
OUT2=COOL
O2TY=4-20
\(\mathrm{O} 2 \mathrm{FT}=\mathrm{BPLS}\)
```

Set SV at $120.0^{\circ} \mathrm{C}, \mathrm{CPB}$ at $125(\%)$ and DB at $-4.0(\%)$.
Apply auto-tuning at $120^{\circ} \mathrm{C}$ for a new system to get optimal PID values. See section 3-11.
Adjustment of CPB is related to the cooling medium used. If water is used as the cooling medium instead of oil, the CPB should be set at 250(\%). If air is used as the cooling medium instead of oil, the CPB should be set at $100(\%)$. The adjustment of DB is dependent on the system requirements. A higher positive value of DB will prevent unwanted cooling action, but will increase the temperature overshoot, while a lower negative value of DB will result in less temperature overshoot, but will increase unwanted cooling action.

Power

$90-250 \mathrm{VAC}, 47-63 \mathrm{~Hz}, 10 \mathrm{VA}, 5 \mathrm{~W}$ maximum
11-26VAC/VDC, 10VA, 5 W maximum

Input

Resolution: 18 bits
Sampling rate: 5 times/second
Maximum rating: -2VDC minimum, 12VDC maximum (1 minute for mA input)
Temperature effect: $\pm 1.5 \mathrm{uV} /{ }^{\circ} \mathrm{C}$ for all inputs except mA input $\pm 3.0 \mathrm{uV} /{ }^{\circ} \mathrm{C}$ for mA input

Sensor lead resistance effect:

T/C: 0.2uV/ohm
3-wire RTD: $2.6^{\circ} \mathrm{C} /$ ohm of resistance difference of two leads
2-wire RTD: $2.6^{\circ} \mathrm{C} / \mathrm{ohm}$ of resistance sum of two leads
Common mode rejection ratio (CMRR): 120dB
Normal mode rejection ratio (NMRR): 55 dB
Sensor break detection:
Sensor open for TC, RTD and mV inputs,
Sensor short for RTD input,
Below 1mA for $4-20 \mathrm{~mA}$ input,
Below 0.25 V for $1-5 \mathrm{~V}$ input, unavailable for other inputs.
Sensor break responding time:
Within 4 seconds for TC, RTD, and mV inputs, 0.1 second for $4-20 \mathrm{~mA}$ and $1-5 \mathrm{~V}$ inputs.

Output 1/Output 2

Relay rating: 2A/240VAC, 200,000 life cycles for resistive load
Pulsed voltage: Source voltage 5V, current limiting resistance 66|.

Linear Output

Resolution: 15 bits
Output regulation: 0.02% for full load change
Output settling time: 0.1 sec . (stable to 99.9%)
Isolation breakdown voltage: 1000 VAC
Temperature effect: $\pm 0.01 \%$ of SPAN $/{ }^{\circ} \mathrm{C}$

Triac (SSR) Output

Rating: 1A/240 VAC
Inrush current: 20A for 1 cycle
Min. load current: 50 mA rms
Max. off-state leakage: 3 mA rms
Max. on-state voltage: 1.5 VAC rms
Insulation resistance: $1000 \mathrm{M} \mid$ min. at 500 VDC
Dielectric strength: 2500 VAC for 1 minute

Characteristics:

Type	Range	Accuracy $@ 25^{\circ} \mathrm{C}$	Input Impedance
J	$-120^{\circ} \mathrm{C}$ to $1000^{\circ} \mathrm{C}$ $\left(-184^{\circ} \mathrm{F}\right.$ to $\left.1832^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
K	$-200^{\circ} \mathrm{C}$ to $1370^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F}\right.$ to $\left.2498^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
T	$-250^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$ $\left(-418^{\circ} \mathrm{F}\right.$ to $\left.752^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
E	$-100^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ $\left(-148^{\circ} \mathrm{F}\right.$ to $\left.1652^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
B	$0^{\circ} \mathrm{C}$ to $1800^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.3272^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$ $\left(200^{\circ} \mathrm{C}\right.$ to $\left.1800^{\circ} \mathrm{C}\right)$	$2.2 \mathrm{M} \Omega$
R	$0^{\circ} \mathrm{C}$ to $1767.8^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.3214^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
S	$0^{\circ} \mathrm{C}$ to $1767.8^{\circ} \mathrm{C}$ $\left(32^{\circ} \mathrm{F}\right.$ to $\left.3214^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
N	$-250^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$ $\left(-418^{\circ} \mathrm{F}\right.$ to $\left.2372^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
L	$-200^{\circ} \mathrm{C}$ to $900^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F}\right.$ to $\left.1652^{\circ} \mathrm{F}\right)$	$\pm 2^{\circ} \mathrm{C}$	$2.2 \mathrm{M} \Omega$
PT100 (DIN)	$-210^{\circ} \mathrm{C}$ to $700^{\circ} \mathrm{C}$ $\left(-346^{\circ} \mathrm{F}\right.$ to $\left.1292^{\circ} \mathrm{F}\right)$	$\pm 0.4{ }^{\circ} \mathrm{C}$	$1.3 \mathrm{~K} \Omega$
PT100 (JIS)	$-200^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ $\left(-328^{\circ} \mathrm{F}\right.$ to $\left.1112^{\circ} \mathrm{F}\right)$	$\pm 0.4{ }^{\circ} \mathrm{C}$	$1.3 \mathrm{~K} \Omega$
mV	-8 mV to 70 mV	$\pm 0.05 \%$	$2.2 \mathrm{M} \Omega$
mA	-3 mA to 27 mA	$\pm 0.05 \%$	70.5Ω
V	-1.3 V to 11.5 V	$\pm 0.05 \%$	$650 \mathrm{~K} \Omega$

Linear Output Characteristics

Type	Zero Tolerance	Span Tolerance	Load Capacity
$4-20 \mathrm{~mA}$	$3.8-4 \mathrm{~mA}$	$20-21 \mathrm{~mA}$	500Ω max.
$0-20 \mathrm{~mA}$	0 mA	$20-21 \mathrm{~mA}$	500Ω max.
$0-5 \mathrm{~V}$	0 V	$5-5.25 \mathrm{~V}$	$10 \mathrm{~K} \Omega$ min.
$1-5 \mathrm{~V}$	$0.9-1 \mathrm{~V}$	$5-5.25 \mathrm{~V}$	$10 \mathrm{~K} \Omega \mathrm{~min}$.
$0-10 \mathrm{~V}$	0 V	$10-10.5 \mathrm{~V}$	$10 \mathrm{~K} \Omega$ min.

DC Voltage Supply Characteristics (Installed at Output 2)

Type	Tolerance	Max. Output Current	Ripple Voltage	Isolation Barrier
20 V	$\pm .5 \mathrm{~V}$	25 mA	$0.2 \mathrm{Vp-p}$	500 VAC
12 V	$\pm 0.3 \mathrm{~V}$	40 mA	$0.1 \mathrm{Vp-p}$	500 VAC
5 V	$\pm 0.15 \mathrm{~V}$	80 mA	$0.05 \mathrm{Vp-p}$	500 VAC

Specifications, continued...

Output 2 functions: Dwell timer
Deviation high/low alarm
Deviation band high/low alarm
PV high/low alarm
PID cooling control
Alarm modes: Normal, latching, hold, latching/hold.
Dwell timer: 0.1-4553.6 minutes

Data Communication

Interface: RS-232 (1 unit), RS-485 (up to 247 units)
Protocol: Modbus protocol RTU mode
Address: 1-247
Baud rate: 0.3-38.4Kbits/sec
Data bits: 7 or 8 bits
Parity bit: None, even or odd
Stop bit: 1 or 2 bits
Communication buffer: 160 bytes

Analog Retransmission

Output Signal: $4-20 \mathrm{~mA}, 0-20 \mathrm{~mA}, 0-5 \mathrm{~V}, 1-5 \mathrm{~V}, 0-10 \mathrm{~V}$
Resolution: 15 bits
Accuracy: $\pm 0.05 \%$ of span $\pm 0.0025 \% /{ }^{\circ} \mathrm{C}$
Load Resistance: 0-500 ohms (for current output)
10 K ohms minimum (for voltage output)
Output Regulation: 0.01% for full load change)

User Interface

Single 4-digit LED display

Keypad: 3 keys for TEC-220, 4 keys for TEC-920
Programming port: For automatic setup, calibration, and testing
Communication port: Connection to PC for supervisory control

Control Mode

Output 1: Reverse (heating) or direct (cooling) action
Output 2: PID cooling control, cooling P band $50 \sim 300 \%$ of PB, dead band -36.0-36.0\% of PB
ON-OFF: 0.1-90.0 $\left({ }^{\circ} \mathrm{F}\right)$ hysteresis control (P band=0)
P or PD: 0-100.0\% offset adjustment
PID: Fuzzy logic modified
Proportional band $0.1-900.0^{\circ} \mathrm{F}$
Integral time 0-1000 seconds
Derivative time $0-360.0$ seconds
Cycle time: 0.1-90.0 seconds
Manual control: Heat (MV1) and cool (MV2)
Auto-tuning: Cold start and warm start
Failure mode: Auto-transfer to manual mode while sensor break or A-D converter damage
Ramping control: $0-900.0^{\circ} \mathrm{F} /$ minute or $0-900.0^{\circ} \mathrm{F} /$ hour ramp rate

Digital Filter

Function: First order
Time constant: $0,0.2,0.5,1,2,5,10,20,30,60$ seconds programmable

Environmental and Physical

Operating temperature: $14^{\circ} \mathrm{F}\left(-10^{\circ} \mathrm{C}\right)$ to $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$
Storage temperature: $-40^{\circ} \mathrm{F}\left(-40^{\circ} \mathrm{C}\right)$ to $140^{\circ} \mathrm{F}\left(60^{\circ} \mathrm{C}\right)$
Humidity: 0 to 90% RH (non-condensing)
Insulation resistance: 20 Mohms min . (at 500VDC)
Dielectric strength: 2000VAC, $50 / 60 \mathrm{~Hz}$ for 1 minute
Vibration resistance: $10-55 \mathrm{~Hz}, 10 \mathrm{~m} / \mathrm{s} \approx$ for 2 hours
Shock resistance: $200 \mathrm{~m} / \mathrm{s} \approx(20 \mathrm{~g})$
Moldings: Flame retardant polycarbonate
Dimensions:
TEC-220 - 1-3/64" $(26.5 \mathrm{~mm}) \mathrm{H} \times 2^{\prime \prime}(50 \mathrm{~mm}) \mathrm{W}$ $\times 4-3 / 8^{\prime \prime}(110.5 \mathrm{~mm}) \mathrm{D}$ Depth behind panel: 3-7/8" (98 mm)
TEC-920 - 1-7/8" (48 mm) H × 1-7/8" (48 mm) W $\times 3-3 / 4 "(94 \mathrm{~mm}) \mathrm{D}$
Depth behind panel: 3-3/8" (86 mm)
Weight: TEC-220 - 26 lbs . (120 grams)
TEC-920-. 31 lbs . (140 grams)

Approval Standards

Safety: UL61010C-1 EN61010-1 (IEC1010-1)

Protective class:

IP65 front panel for TEC-220
IP30 front panel for TEC-920, all indoor use
IP20 for terminals and housing with protective cover.
All indoor use.
EMC: EN61326

This chapter specifies the Modbus Communications protocol as
RS-232 or RS-485 interface module is installed. Only RTU mode is supported. Data is transmitted as eight-bit binary bytes with 1 start bit, 1 stop bit and optional parity checking (None, Even or Odd). Baud rate may be set to 2400, 4800, 9600, 14400, 19200, 28800 and 38400.

7-1 Functions Supported

Only function 03,06 and 16 are available for this series of controllers. The message formats for each function are described as follows:

Function 03: Read Holding Registers

Query: (from Primary)
Secondary address (0-255)
Function code (3)
Starting address of register Hi (0)
Starting address of register Lo
(0-79, 128-131)
No. of words Hi (0)
No. of words Lo (1-79)
CRC16 Hi
CRC16 Lo

Function 06: Preset Single Register
Query: (from Primary)
Secondary address (0-255)
Function code (6)
Register address Hi (0)
Register address Lo (0-79, 128-131)
Data Hi
Data Lo
CRC16 Hi
CRC16 Lo

Function 16: Preset Multiple Registers

Query: (from Primary)
Secondary address (0-255)
Function code (16)
Starting address of register Hi (0)
Starting address of register Lo (0-79, 128-131)
No. of words Hi (0)
No. of words Lo (1-79)
Byte count (2-158)
Data 1 Hi
Data 1 Lo
Data 2 Hi
Data 2 Lo
-
-
-
-

CRC16 Hi
CRC16 Lo

7-2 Exception Responses

If the controller receives a message which contains a corrupted character (parity check error, framing error etc.), or if the CRC16 check fails, the controller ignores the message. However, if the controller receives a syntactically correct message which contains an illegal value, it will send an exception response, consisting of five bytes as follows:
secondary address + offset function code + exception code + CRC16 Hi +CRC16 Lo
Where the offset function code is obtained by adding the function code with 128 (ie. function 3 becomes $\mathrm{H}^{\prime} 83$), and the exception code is equal to the value contained in the following table:

Exemption Code	Name	Cause
1	Bad Function Code	Function code is not supported by the controller
2	Illegal data address	Register address out of range
3	Illegal data value	Data value out of range or attempt to write a read-only or protected data

7-3 Parameter Table

Register Address	Parameter Notation	Parameter	Scale Low	Scale High	Notes
0	SP1	Set Point 1	*4	*4	R/W
1	SP2	Set Point 2	*7	*7	R/W
2	SP3	Set Point 3	*6	*6	R/W
3	LOCK	Lock code	0	65535	R/W
4	INPT	Input sensor selection	0	65535	R/W
5	UNIT	Measuring unit	0	65535	R/W
6	DP	Decimal point position	0	65535	R/W
7	INLO	Low scale value for linear input	*4	*4	R/W
8	INHI	High scale value for linear input	*4	*4	R/W
9	SP1L	Low limit of SP1	*4	*4	R/W
10	SP1H	High Limit of SP1	*4	*4	R/W
11	SHIF	PV shift value	*4	*4	R/W
12	FILT	Filter time constant	0	65535	R/W
13	DISP	Display form	0	65535	R/W
14	PB	P (proportional) band	*5	*5	R/W
15	TI	Integral time	0	65535	R/W
16	TD	Derivative time	0.0	6553.5	R/W
17	OUT1	Output 1 function	0	65535	R/W
18	O1TY	Output 1 signal type	0	65535	R/W
19	O1FT	Output 1 failure transfer	-1999.9	4553.6	R/W
20	O1HY	Output 1 ON-OFF hysteresis	*5	*5	R/W
21	CYC1	Output 1 cycle time	0.0	6553.5	R/W
22	OFST	Offset value for P control	0.0	6553.5	R/W
23	RAMP	Ramp function	0	65535	R/W
24	RR	Ramp rate	*5	*5	R/W
25	OUT2	Output 2 function	0	65535	R/W
26	RELO	Retransmission low scale value	*4	*4	R/W
27	O2TY	Output 2 signal type	0	65535	R/W
28	O2FT	Output 2 failure transfer	-1999.9	4553.6	R/W
29	O2HY	Output 2 ON-OFF hysteresis	*5	*5	R/W
30	CYC2	Output 2 cycle time	0.0	6553.5	R/W
31	CPB	Cooling P band	0	65535	R/W
32	DB	Heating-cooling dead band	-1999.9	4553.6	R/W

Register Address	Parameter Notation	Parameter	$\begin{aligned} & \text { Scale } \\ & \text { Low } \end{aligned}$	Scale High	Notes
33	ALFN	Alarm Function	0	65535	R/W
34	REHI	Retransmission high scale value	*4	*4	R/W
35	ALMD	Alarm operation mode	0	65535	R/W
36	ALHY	Alarm hysteresis	*5	*5	R/W
37	ALFT	Alarm failure transfer	0	65535	R/W
38	COMM	Communication function	0	65535	R/W
39	ADDR	Address	0	65535	R/W
40	BAUD	Baud rate	0	65535	R/W
41	DATA	Data bit count	0	65535	R/W
42	PARI	Parity bit	0	65535	R/W
43	STOP	Stop bit count	0	65535	R/W
44	SEL1	Selection 1	0	65535	R/W
45	SEL2	Selection 2	0	65535	R/W
46	SEL3	Selection 3	0	65535	R/W
47	SEL4	Selection 4	0	65535	R/W
48	SEL5	Selection 5	0	65535	R/W
49	SEL6	Selection 6	0	65535	R/W
50	SEL7	Selection 7	0	65535	R/W
51	SEL8	Selection 8	0	65535	R/W
52	ADLO	mV calibration low coefficient	-1999.9	4553.6	R/W
53	ADHI	mV calibration high coefficient	-1999.9	4553.6	R/W
54	RTDL	RTD calibration low coefficient	-1999.9	4553.6	R/W
55	RTDH	RTD calibration high coefficient	-1999.9	4553.6	R/W
56	CJLO	Cold junction calibration low coefficient	-199.99	455.36	R/W
57	CJHI	Cold junction calibration high coefficient	-1999.9	4553.6	R/W
58	DATE	Date code	0	65535	R/W
59	SRNO	Serial number	0	65535	R/W
60	HOUR	Working hours of the controller	0	65535	R/W
61	BPL1	Bumpless transfer of OP1	0	65535	R
62	BPL2	Bumpless transfer of OP2	0.00	655.35	R
63	CJCL	Cold junction signal low	0.000	65.535	R
64,128	PV	Process value	*4	*4	R
65,129	SV	Current set point value	*4	*4	R
$\begin{gathered} 66 \\ 130 \\ \hline \end{gathered}$	MV1	OP1 control output value	0.00	655.35	Read only unless in manual control
$\begin{gathered} 67 \\ 131 \end{gathered}$	MV2	OP2 control output value	0.00	655.35	Read only unless in manual control
68	TIMER	Remaining time of dwell timer	-1999.9	4553.6	R
69	EROR	Error code * 1	0	65535	R
70	MODE	Operation mode and alarm status *2	0	65535	R
71,140	PROG	Program code *3	0.00	655.35	R
72	CMND	Command code	0	65535	R/W
73	JOB1	Job code	0	65535	R/W
74	JOB2	Job code	0	65535	R/W
75	JOB3	Job code	0	65535	R/W
76	CJCT	Cold Junction Temperature	-199.99	455.36	R
77		Reserved	0	65535	R
78		Reserved	0	65535	R
79		Reserved	0	65535	R

*1 The error code is shown in the first column of Table A. 1 page 28.
*2 Definition for the value of MODE register:
H'000X $=$ Normal mode
H'010X $=$ Calibration mode
H'020X $^{\prime}$ Auto-tuning mode
H'030X $=$ Manual control mode
H'040X $=$ Failure mode
$\mathrm{H}^{\prime} \mathbf{0 X 0 0}=$ Alarm status is off
$H^{\prime} 0 \times 01=$ Alarm status is on
The alarm status is shown in MV2 instead of MODE for models TEC-220 and TEC-920.
*3 The PROG Code is defined in the following table

Model No.	TEC-9100	TEC-8100	TEC-4100	TEC-7100	TEC-220	TEC-920
PROG Code	$6 . X X$	$11 . X X$	12.XX	13.XX	$33 . X X$	$34 . X X$

(xx denotes the software version)
*4 The scale high/low values are defined in the following table for SP1, INLO, INHI, SP1L, SP1H, SHIF, PV, SV, RELO and REHI:

Conditions	Non-linear input	Linear input $\mathbf{D P = 0}$	Linear input $\mathbf{D P}=\mathbf{1}$	Linear input $\mathbf{D P}=\mathbf{2}$	Linear input $\mathbf{D P}=\mathbf{3}$
Scale low	-1999.9	-19999	-1999.9	-199.99	-19.999
Scale High	4553.6	45536	4553.6	455.36	45.536

*5 The scale high/low values are defined in the following table for PB, O1HY, RR, O2HY, and ALHY:

Conditions	Non-linear input	Linear input $\mathbf{D P}=\mathbf{0}$	Linear input $\mathbf{D P}=\mathbf{1}$	Linear input $\mathbf{D P}=\mathbf{2}$	Linear input $\mathbf{D P}=\mathbf{3}$
Scale low	0.0	0	0.0	0.00	0.000
Scale High	6553.5	65535	6553.5	655.35	65.535

*6 The scale high/low values are defined in the following table for SP3:

Conditions	ALFN=1 (TIMR)	Non-linear input	Linear input $\mathbf{D P = 0}$	Linear input DP = 1	Linear input $\mathbf{D P = 2}$	Linear input $\mathbf{D P = 3}$
Scale low	-1999.9	-1999.9	-19999	-1999.9	-199.99	-19.999
Scale High	4553.6	4553.6	45536	4553.6	455.36	45.536

*7 The scale high/low values are defined in the following table for SP2:
For TEC-220 and TEC-920

Conditions	OUT2=1 (TIMR)	Non-linear input	Linear input DP $=\mathbf{0}$	Linear input DP $=\mathbf{1}$	Linear input $\mathbf{D P = 2}$	Linear input $\mathbf{D P}=\mathbf{3}$
Scale low	-1999.9	-1999.9	-19999	-1999.9	-199.99	-19.999
Scale High	4553.6	4553.6	45536	4553.6	455.36	45.536

For TEC-9100, TEC-8100, TEC-7100 and TEC-4100:

Conditions	Non-linear input	Linear input $\mathbf{D P = 0}$	Linear input $\mathbf{D P = 1}$	Linear input $\mathbf{D P = 2}$	Linear input DP = 3
Scale low	-1999.9	-19999	-1999.9	-199.99	-19.999
Scale High	4553.6	45536	4553.6	455.36	45.536

7-4 Data Conversion

The word data are regarded as unsigned (positive) data in the Modbus message. However, the actual value of the parameter may be a negative value with decimal point. The high/low scale values for each parameter are used for the purpose of such conversion.

Let $\quad \mathrm{M}=$ Value of Modbus message $\quad \mathrm{A}=$ Actual value of the parameter

$$
\mathrm{SL}=\text { Scale low value of the parameter } \quad \mathrm{SH}=\text { Scale high value of the parameter }
$$

$$
\mathrm{M}=\left(\frac{65535}{\mathrm{SH}-\mathrm{SL}}\right) \times(\mathrm{A}-\mathrm{SL}) \quad \mathrm{A}=\left(\frac{\mathrm{SH}-\mathrm{SL}}{65535}\right) \times(\mathrm{M}+\mathrm{SL})
$$

7-5 Communication Examples:

Example 1: Download the default values via the programming port

The programming port can perform Modbus communications regardless of the incorrect setup values of address, baud, parity, stop bit, etc. It is especially useful during the first time configuration for the controller. The host must be set with 9600 baud rate, 8 data bits, even parity and 1 stop bit.
The Modbus message frame with hexadecimal values is shown as follows:

01	10	00	00	00	34	68	4 F	19	4 E	83	4 E	83	00	00
Addr.	Func.	Starting Addr.	No. of words	Bytes	$\mathrm{SP} 1=25.0$	$\mathrm{SP} 2=10.0$	$\mathrm{Sp} 3=10.0$	LOCK $=0$						

00	01	00	00	00	01	4 D	6 D	51	C 4	4 D	6 D	63	21
$\mathrm{INPT}=1$	UNIT $=0$	$\mathrm{DP}=1$	$\mathrm{INLO}=-17.8$	$\mathrm{INHI}=93.3$	SP1L $=-17.8$	SP1H $=537.8$							

4 E	1 F	00	02	00	00	00	64	00	64	00	FA	00	00
SHIF $=0.0$	FILT $=2$	DISP $=0$	$\mathrm{~PB}=10.0$		$\mathrm{TI}=100$	$\mathrm{TD}=25.0$	OUT $1=0$						

00	00	4 E	1 F	00	01	00	B 4	00	FA	00	00	00	00
O1TY $=0$	O1FT $=0$	$\mathrm{O} 1 \mathrm{HY}=0.1$		$\mathrm{CYC} 1=18.0$	OFST $=25.0$	RAMP $=0$	$\mathrm{RR}=0.0$						

00	02	4 E	1 F	00	00	4 E	1 F	00	01	00	B 4	00	64
OUT2 $2=2$	$\mathrm{RELO}=0.0$	$\mathrm{O} 2 \mathrm{TY}=0$	$\mathrm{O} 2 \mathrm{FT}=0$	$\mathrm{O} 2 \mathrm{HY}=0.1$	$\mathrm{CYC} 2=18.0$	$\mathrm{CPB}=100$							

4 E	1 F	00	02	52	07	00	00	00	01	00	00	00	01
$\mathrm{DB}=0$	ALFN $=2$	REHI $=100.0$		ALMD $=0$	ALHY $=0.1$	ALFT $=0$	COMM $=1$						

00	01	00	02	00	01	00	00	00	00	00	02	00	03
ADDR $=1$		BAUD $=2$		DATA $=1$		PARI $=0$		STOP $=0$	SEL $1=2$	SEL $2=3$			

00	04	00	06	00	07	00	08	00	$0 A$	00	11	Hi	Lo
SEL $3=4$	SEL4 $=6$		SEL5 $=7$	SEL6 $=8$	SEL7 $=10$	SEL8 $=17$	CRC16						

Example 2: Read PV, SV, MV1 and MV2

Send the following message to the controller via the COMM port or programming port:

	03	00	H'40 H'80	00	04	Hi	Lo
Addr.	Func.	Starting Addr.	No. of words	CRC16			

Example 4: Enter Auto-tuning Mode
Query

	06	00	H'48	H'68	H'28	Hi	Lo
Addr.	Func.	Register Addr.	Data Hi/Lo	CRC16			

Example 6: Read All Parameters
 Query

Example 3: Perform Reset Function (same effect as pressing ${ }^{\text {R }}$ key) Query

	06	00	H'48	H'68	H'25	Hi	Lo
Addr.	Func.	Register Addr.	Data Hi/Lo	CRC16			

Example 5: Enter Manual Control Mode

 Query| | 06 | 00 | H'48 | H’68 | H'27 | Hi | Lo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Addr. | Func. | Register Addr. | Data Hi/Lo | CRC16 | | | |

Example 7: Modify the Calibration Coefficient

Preset the CMND register with 26669 before attempting to change the calibration coefficient.

Table A． 1 Error Codes and Corrective Actions

Error Code	Display Symbol	Error Description	Corrective Action
4	Er－	Illegal setup values being used： Before COOL is used for OUT2， DIRT（cooling action）has already been used for OUT1，or PID mode is not used for OUT1（that is， $\mathrm{PB}=0$ and／or $\mathrm{Tl}=0$ ）	Check and correct setup values of OUT2，PB，TI and OUT1．If OUT2 is required for cooling control，the control should use PID mode （ $\mathrm{PB} \neq 0, \mathrm{~T} \mid \neq 0$ ）and OUT1 should use reverse mode（heating action）． Otherwise，don＇t use OUT2 for cooling control．
10	Er	Communication error：bad function code	Correct the communication software to meet the protocol requirements．
11	Er i i	Communication error：register address out of range	Don＇t issue an over－range register address to the slave．
14	Er ition	Communication error：attempt to write a read－only data or a protected data	Don＇t write a read－only data or a protected data to the slave．
15	に，亿年	Communication error：write a value which is out of range to a register	Don＇t write an over－range data to the slave register．
26	Fはだ	Fail to perform auto－tuning function	1．The PID values obtained after auto－tuning procedure are out of range．Retry auto－tuning． 2．Don＇t change set point value during auto－tuning procedure． 3．Use manual tuning instead of auto－tuning． 4．Don＇t set a zero value for PB． 5．Don＇t set a zero value for TI ． 6．Press RESET key
29	にただ何	EEPROM can＇t be written correctly	Return to factory for repair．
30	ジー	Cold junction compensation for thermocouple malfunction	Return to factory for repair．
39	らににな	Input sensor break，or input current below 1 mA if $4-20 \mathrm{~mA}$ is selected，or input voltage below 0.25 V if $1-5 \mathrm{~V}$ is selected	Replace input sensor．
40	ターロ゙ー	A to D converter or related component（s）malfunction	Return to factory for repair．

RETURNS

No product returns can be accepted without a completed
Return Material Authorization (RMA) form.

TECHNICAL SUPPORT

Technical questions and troubleshooting help is available from Tempco. When calling or writing please give as much background information on the application or process as possible.
E-mail: techsupport@tempco.com
Phone: 630-350-2252
800-323-6859

Note: Information in this manual was deemed correct at the time of printing. The policy of Tempco is one of continuous development and product improvement, and we reserve the right to modify specifications and designs without prior notice. Not responsible for typographical errors.

NOTES

Custom Manufacturer Since 1972

HEAT THINGS UP!

With Thousands of Design Variations We Make Everything You Need.

Band Heaters
Cast-In Heaters
Radiant Heaters
Flexible Heaters
Process Heaters
Temperature Control

Cartridge Heaters
Coil \& Cable Heaters
Strip Heaters
Tubular Heaters
Instrumentation
Temperature Sensors

607 N. Central Avenue Wood Dale, IL 60191-1452 USA
P: 630-350-2252 Toll Free: 800-323-6859
F: 630-350-0232 E: info@tempco.com

