



# **Checklist — Selecting a High Temperature Tubular Duct Heater**



## Sizing the Duct Heater

To properly match a duct heater to an application, the wattage, air velocity and element watt density must be determined.

Formulas and graphs on the following pages that will aid you in your design include:

- Wattage calculation formulas and table
- Element Watt Density vs. Sheath Temperature and Air Velocity Graph
- Pressure Drop vs. Air Velocity Graph

# In most applications the following design limitations should be adhered to:

- Maximum watt density of 40 watts/in<sup>2</sup> (6.2 watts/cm<sup>2</sup>)
- Maximum element sheath temperature of 1400°F (760°C)
- Minimum air velocity of 200 feet per minute (61 meters per minute)
- Maximum voltage for UL certified heaters is 480V.
- Maximum voltage for CSA certified heaters is 600V.

## ✓ Calculating Minimum Wattage Requirement

### **Calculating Minimum Wattage Requirement**

Table is for quick-estimation purposes and is based on air under standard conditions (70°F inlet air temperature at 14.7 PSIA).



*Note:* If air flow is given in CFM at operating temperature and pressure it can be converted to SCFM (Standard Cubic Feet per Minute) with the following formula (use the equations to the right for compressed air):

$$SCFM = CFM \times \frac{P}{14.7} \times \frac{530}{T + 460}$$

- P = operating pressure (gauge pressure + 14.7)
- T = operating temperature

Remember when calculating wattage to use the maximum anticipated air flow and to compensate for any heat losses.

#### For free air use equations:

$$KW = \frac{SCFM \times \text{Temperature rise (°F)}}{3000}$$

 $KW = \frac{SCMM \times \text{Temperature rise (°C)}}{47}$ 

#### For compressed air use equations:

$$\begin{split} \mathrm{KW} &= \frac{\mathrm{CFM^{*}} \times \mathrm{Density^{*}} \left( \mathrm{lbs/cu. ft.} \right) \times \mathrm{Temperature \ rise} \ (^{\circ}\mathrm{F})}{228} \\ & \text{or} \\ \mathrm{KW} &= \frac{\mathrm{CMM^{*}} \times \mathrm{Density^{*}} \left( \mathrm{kgs/cu. m} \right) \times \mathrm{Temperature \ rise} \ (^{\circ}\mathrm{C})}{57.5} \end{split}$$

\*At heater inlet temperature and pressure

Note: The free air equations include a 6% safety factor.

#### KWH to Heat Air at Selected Flow Rates

|             | Temperature Rise (°F)      |      |     |      |       |     |       |       |     |       |     |
|-------------|----------------------------|------|-----|------|-------|-----|-------|-------|-----|-------|-----|
| Amt. of Air | 50                         | 100  | 150 | 200  | 250   | 300 | 350   | 400   | 450 | 500   | 600 |
| CFM         | Kilowatt Hours to Heat Air |      |     |      |       |     |       |       |     |       |     |
| 100         | 1.7                        | 3.3  | 5   | 6.7  | 8.3   | 10  | 11.7  | 13.3  | 15  | 16.7  | 20  |
| 200         | 3.3                        | 6.7  | 10  | 13.3 | 16.7  | 20  | 23.3  | 26.7  | 30  | 33.3  | 40  |
| 300         | 5.0                        | 10.0 | 15  | 20.0 | 25.0  | 30  | 35.0  | 40.0  | 45  | 50.0  | 60  |
| 400         | 6.7                        | 13.3 | 20  | 26.7 | 33.3  | 40  | 46.7  | 53.3  | 60  | 66.7  | 80  |
| 500         | 8.3                        | 16.7 | 25  | 33.3 | 41.7  | 50  | 58.3  | 66.7  | 75  | 83.3  | 100 |
| 600         | 10.0                       | 20.0 | 30  | 40.0 | 50.0  | 60  | 70.0  | 80.0  | 90  | 100.0 | 120 |
| 700         | 11.7                       | 23.3 | 35  | 46.7 | 58.3  | 70  | 81.7  | 93.3  | 105 | 116.7 | 140 |
| 800         | 13.3                       | 26.7 | 40  | 53.3 | 66.7  | 80  | 93.3  | 106.7 | 120 | 133.3 | 160 |
| 900         | 15.0                       | 30.0 | 45  | 60.0 | 75.0  | 90  | 105.0 | 120.0 | 135 | 150.0 | 180 |
| 1000        | 16.7                       | 33.3 | 50  | 66.7 | 83.3  | 100 | 116.7 | 133.3 | 150 | 166.7 | 200 |
| 1100        | 18.3                       | 36.7 | 55  | 73.3 | 91.7  | 110 | 128.3 | 146.7 | 165 | 183.3 | 220 |
| 1200        | 20.0                       | 40.0 | 60  | 80.0 | 100.0 | 120 | 140.0 | 160.0 | 180 | 200.0 | 240 |

**Note:** For additional information or help with your application please consult TEMPCO.