Coil \& Cable Heaters

Bulk Round Heater Cable

Bulk Round Heater Cable

Typical Applications

- Blown Film Die Heaters

\bullet Heat Tracing
\rightarrow De-icing Car Wash Door Rails
\bullet De-icing Outside Stairways

Design and Construction Specifications

Terminations

See page 5-5 for potted lead transitions. There are two choices of potting compounds. Either cement potting for a high temperature application or high temperature epoxy for $450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$ maximum temperature. Also, there are three major choices of lead wires:

M1 - TGGT (Teflon ${ }^{\circledR}$ tape, fiberglass, Teflon ${ }^{\circledR}$ treated fiberglass overbraid) insulated lead wire for $482^{\circ} \mathrm{F}\left(250^{\circ} \mathrm{C}\right)$.

M2 - Teflon ${ }^{\text {® }}$ insulated lead wire, which is normally potted with a high temperature epoxy rated $450^{\circ} \mathrm{F}\left(232^{\circ} \mathrm{C}\right)$

M3 - MGT (mica tape, Teflon ${ }^{\circledR}$ treated fiberglass overbraid) insulated lead wire for $842^{\circ} \mathrm{F}\left(450^{\circ} \mathrm{C}\right)$.

Minimum Bending Radius

Minimum bending radius for all mineral insulated cable heaters is two times the sheath diameter.

Power Calculation

The required wattage can be calculated using the following formula:

$$
\text { Wattage }=\frac{(\text { Voltage })^{2}}{\text { Cable length (in feet) } \times \text { Ohms/foot (from table) }}
$$

Standard Single Conductor Heater Cable

Sheath OD		Resistance (+/-10\%) ohms/ft. ohms $/ \mathrm{mtr}$.		Maximum Length feet meters		Sheath Material	Maximum Current Allowed (Amps)	Part Number
. 125	3.17	0.67	2.2	250	75	Inconel ${ }^{\circledR} 600$	13.3	CAS01125
. 125	3.17	0.72	2.4	250	75	Inconel ${ }^{\circledR} 600$	12.5	CAS02125
. 125	3.17	0.78	2.6	250	75	Inconel ${ }^{\circledR} 600$	12.0	CAS03125

